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Introduction

Introduction

Recent advancements in artificial intelligence have pushed it to the forefront of scientific and
technological discourse. AI’s impact surpasses disciplinary boundaries, influencing fields as
diverse as healthcare diagnostics, algorithmic finance, and industrial automation. Given AI’s
widespread influence, understanding its potential for environmental sustainability is important.

One specific area of promise lies in reverse osmosis (RO) , that is a membrane based process
technology to purify water by separating the dissolved solids from feed stream resulting in
permeate and reject stream for a wide range of applications in domestic as well as industrial
applications. It is seen from literature review that RO technology is used to remove dissolved
solids, colour, organic contaminants, and nitrate from feed stream [1].

Reverse osmosis systems offer a valuable solution for water treatment, particularly in areas
with limited freshwater resources. However, these systems face several challenges that hinder
their efficiency and sustainability. Major problems include membrane fouling, which reduces
water flow and increases energy consumption. Fouling causes significant loss of productivity
and added operational cost thus becomes a challenge on membrane operation [2]. Additionally,
RO processes can generate a significant amount of brine waste, posing environmental concerns.
Energy consumption per unit of water produced is also a crucial performance measure, as it
directly impacts the environmental footprint of the RO system.

This thesis has two main contributions, each addressing a critical aspect of improving the
management of reverse osmosis systems.

The first one focuses on how machine learning can predict problems in reverse osmosis (RO)
systems before they happen. We will use algorithms and methods to learn from past information,
like water quality, previous issues, and flow rates, to spot patterns that might lead to things going
wrong. By knowing problems are coming, we can fix them early and avoid expensive shutdowns.
By implementing these algorithms, Professionals in RO systems can save money, keep things
running smoothly, and make water treatment more sustainable.

The second contribution consists of using Large Language Models (LLMs) to perform in the
troubleshooting of problems related to RO systems. This section will explore how LLMs can
be integrated into existing maintenance frameworks to support engineers and technicians in
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Introduction

identifying root causes and implementing solutions more quickly and accurately.

The findings presented here aim to contribute to the ongoing efforts to optimize water treatment
processes, offering practical insights that can be applied across various industrial contexts.

The structure of this report begins with Chapter 1, which outlines the context of the internship,
including the motivation, objectives, and project planning. Chapter 2 delves into the theoretical
foundations of reverse osmosis (RO) systems, addressing major challenges like biofouling and
scaling, followed by a review of AI techniques for predictive maintenance and the role of Large
Language Models (LLMs) and Retrieval-Augmented Generation (RAG). Chapter 3 focuses
on the practical application of machine learning for predicting water quality and RO system
performance, including data pre-processing and model evaluation. Chapter 4 transitions to the
implementation of LLMs in troubleshooting RO systems, supported by experimental results and
case studies. The report ends with offering a synthesis of findings and recommendations for
future research and practical applications in RO performance optimization.
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Chapter 1. Context of the internship

Chapter 1: Context of the internship

1.1 Team

This chapter provides an overview of the context in which the internship was conducted, high-
lighting the collaborative environment and key teams involved.

To better understand the dynamics of the internship, it is essential to introduce the three main
teams that played a pivotal role in shaping this experience: Team Ibn Tofail, Team Aquadviser,
and Team ONEE. Each of these teams brings a unique set of skills and expertise to the table,
contributing to the success of the Project. The following sections will provide detailed descrip-
tions of each team, their core functions, and their contributions to the projects we were involved
in during the internship.

1.1.1 Team Ibn Tofail

Team Ibn Tofail is composed of two Master’s students, Ihssane Aoune and Abdellah Walid,
specializing in Artificial Intelligence. Both students are enrolled in the Master’s program in
Artificial Intelligence and Virtual Reality at the Faculty of Sciences in Kenitra. Both students are
under the academic supervision of Pr Khaoula Boukir at Ibn Tofail University.

To introduce new insights into the water desalination field, Team Ibn Tofail collaborates closely
with professionals who specialize in water treatment and desalination technologies. By combining
their expertise in AI with the industry knowledge of these professionals, the team aims to develop
AI-driven solutions that can optimize desalination processes.

1.1.2 Team Aquadviser

Aquadviser is a company dedicated to advancing water desalination technologies by integrating
artificial intelligence into troubleshooting processes. Founded by Abdelhakim El Fadil, who
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Chapter 1. Context of the internship

leads the development of Aquadviser’s services and forms strategic partnerships. Co-founder
Aboubakr Achraf El Ghazi, who manages technical developments and oversees operations, plays
a crucial role in driving the company’s technical excellence and operational efficiency.

Aquadviser’s team collaborates closely with Team Ibn Tofail, providing assistance with technical
problems and offering critical evaluation of the AI team’s results. This collaboration ensures that
the AI-driven solutions developed by Team Ibn Tofail are effectively created to meet the practical
needs of the desalination industry. Moreover, Aquadviser plays an important role in facilitating
communication with Team ONEE, coordinating efforts to align the AI developments with the
operational requirements and standards of ONEE. By combining advanced AI expertise with
practical industry experience, this partnership aims to introduce new insights and innovations,
enhancing the reliability and efficiency of water desalination through cutting-edge technology.

1.1.3 Team ONEE

Team ONEE (National Office of Electricity and Drinking Water), is focused on ensuring efficient
water supply and distribution across Morocco. The team is composed of Younes Toumine who is
the external supervisor for our internship, and Head of the Methods Office within the company,
and Ismael Chaoui, Head of the TAG Kenitra Central. Both professionals helped us gain a deeper
understanding of how systems operate within the company. Their insights were valuable in
bridging the gap between AI technologies and practical applications in desalination.

ONEE contributed significantly to the project by providing essential datasets from their opera-
tions, which were crucial for developing and testing our AI-driven solutions. Their support went
beyond data provision; they also ensured that our solutions were aligned with the real-world
needs of the desalination industry.

1.2 Motivation and Objectives

1.2.1 Introduction

The complexity of managing reverse osmosis (RO) systems has long posed challenges in the
water treatment industry. Ensuring the consistent performance of these systems is essential to
maintaining water quality standards. RO systems are essential for producing increased-quality
water but are prone to failures that can compromise their efficiency and reliability.

12
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1.2.2 Problem Identification

Despite their importance in delivering high-quality water, RO systems face issues such as
membrane fouling and scaling, which can compromise their efficiency and reliability. Therefore,
ensuring good performance is essential for meeting water quality standards and minimizing
operational costs. Additionally, these failures result in a waste of time, resources, and money.
Thus, it will be crucial to develop and implement better solutions that can accurately predict
and effectively address system problems to help minimize the negative impact and ensure more
efficient operations.

For that purpose, Aquadviser focused on applying artificial intelligence to solve water treatment
problems. They first noticed a frequent issue: despite the advanced technology used in RO
systems, unpredictable failures frequently occurred, leading to increased operational costs and
resource waste.

1.2.3 Motivation

Figure 1.1: A timeline illustrating how Inefficient troubleshooting amplifies water treatment
costs

Mid-size desalination operations experience an annual loss of approximately €1.5 million due to
sub-optimal performance [3] [4]. This significant financial impact highlights the pressing need to
optimize the troubleshooting process, aiming to reduce costs and minimize the time required for
problem resolution. By focusing on improving efficiency and effectiveness in troubleshooting,
these operations can achieve better economic outcomes and enhance overall system performance.

Recognizing the potential to improve the reliability and efficiency of these systems through
the use of AI, Aquadviser initiated a collaboration with ONEE (National Office of Water and
Electricity), a Moroccan company that manages the electricity and water supply. It focuses
on rural electrification, monitoring electricity tariffs, and executing various projects to ensure

13
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reliable service in Morocco. ONEE helped provide datasets from different RO systems, that
contain multiple parameters influencing the performance of RO systems and failure incidents.
These datasets were used to develop advanced predictive models.

With the help of both companies, our collective goal was to develop innovative solutions that not
only predict potential issues within RO systems before they lead to significant failures but also
streamline the troubleshooting process when problems do occur.

This collaboration has led to the development of a two-part approach. The first involves using
machine learning models to analyze the characteristic data of RO systems (Using ONEE datasets),
enabling the early prediction of system failures. The second focuses on utilizing Large Language
Models (Using technical manuals and data from reliable online sources) to assist in resolving
issues, providing real-time, AI-driven insights to support maintenance teams.

Together, Aquadviser, ONEE, and our research team worked to transform the maintenance and
operation of reverse osmosis systems, aiming to lower maintenance costs and improve overall
system performance. The solutions being developed in this collaboration are expected to offer a
proactive and intelligent approach to managing RO systems.

1.2.4 Objectives

The main objectives of our project are developed in the figure below :

Develop Predictive Models for RO Systems

Our team focuses here on predicting potential failures and performance issues in reverse osmosis
(RO) systems using machine learning techniques. By analyzing datasets provided by ONEE,
which include various parameters influencing the performance of RO systems, we aim to develop
predictive models that can identify potential failures before they occur. This task required
careful data cleaning and preprocessing to ensure the accuracy and reliability of the models.
By anticipating issues, the model helps in maintaining system efficiency and preventing costly
breakdowns, thereby enhancing the overall reliability of water treatment processes.

Enhance Troubleshooting with AI-Driven Insights

To enhance the troubleshooting experience, we implement Large Language Models (LLMs) to
offer real-time guidance for maintenance teams dealing with RO systems. With the help and
expertise of Aquadviser’s team, we extracted valuable data from reliable online sources, such
as technical manuals and research publications. This data, combined with the field knowledge
of industry experts, allows the LLMs to provide accurate and context-specific insights for
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Chapter 1. Context of the internship

Figure 1.2: Main Objectives of the Thesis

troubleshooting. By facilitating quick and informed decision-making, these AI-driven insights
improve the effectiveness of maintenance efforts and reduce the time required to address system
issues.

Optimize RO System Performance

By using LLMs to streamline the troubleshooting process, professionals can save significant time
and resources in diagnosing and resolving issues. The optimized management of RO systems
ensures continuous operation with minimal disruptions, ultimately leading to cost savings and
improved performance.

Integrate AI Solutions for Better Water Quality Management

Using feedback from industry experts, the AI solutions are created to provide high-quality
guidance and support to maintenance teams. By integrating AI, the water treatment industry
can achieve more precise control over water quality, ensuring that output consistently meets
regulatory standards. The integration of AI-driven insights and predictive models forms a
comprehensive approach to maintaining and improving water quality management practices.
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1.3 Planning

1.3.1 Gantt

A Gantt chart, commonly used in project management, is one of the most popular and useful
ways of showing activities (tasks or events) displayed against time. On the left of the chart is
a list of the activities and along the top is a suitable time scale. Each activity is represented
by a bar; the position and length of the bar reflects the start date, duration and end date of the
activity [5].

1.3.2 Tasks

Figure 1.3: Timeline of the project using Gantt

As illustrated in Figure 1.3, the tasks are described in greater detail below:

Literature Review

The initial phase involves a literature review to understand the current state of reverse osmosis
(RO) systems, AI, and machine learning applications in water treatment. The findings from this
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phase will guide the development of predictive models and AI-driven solutions.

Data Collection and Processing

This phase focuses on collecting and preprocessing data from ONEE, which includes parameters
related to the performance of RO systems and failure incidents. The data is cleaned and processed
to ensure accuracy and reliability, to build strong predictive models. This phase is critical as the
quality of data directly impacts the effectiveness of the machine learning models.

Building Prediction Models

Once the data is prepared, the next phase involves developing predictive models using machine
learning techniques. These models aim to forecast potential failures and performance issues in
RO systems based on historical data.

Data Scraping of Documents

Data scraping is used to extract documents from reliable online sources. This data is used
to inform the development of Large Language Models (LLMs), which provide real-time trou-
bleshooting guidance for maintenance teams. Aquadviser’s expertise in the field is leveraged
during this phase to ensure the accuracy and relevance of the extracted data.

RaG on Q&A File and Evaluation

In this phase, Retrieval-Augmented Generation (RaG) techniques are applied to the Q&A file
that contains data from Dupont’s Q&A website, which was collected to generate insightful
responses. The generated answers are evaluated for accuracy and usefulness, and the model is
refined accordingly. This iterative process aims to improve the model’s ability to provide precise
and context-aware guidance.

GraphRAG Research and Implementation

Research and implementation of GraphRAG techniques are undertaken to incorporate graph-
based data into AI models. This phase explores how GraphRAG’s Microsoft can enhance the
quality of the generated answers.
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GraphRag vs. RaG Evaluation

This task involves comparing the performance of GraphRAG with traditional RaG methods in
generating AI-driven insights for troubleshooting. The evaluation will determine which approach
provides better accuracy and reliability in managing RO systems.

Aquadviser Web App

This final phase involves developing and integrating a user-friendly web app for Aquadviser
that includes a chatbot interface. The web app is designed to provide maintenance teams with
real-time access to AI-driven insights, improving the efficiency of troubleshooting and decision-
making processes. The web app also includes a homepage page that contains details about
Aquadviser.

18



Chapter 2. Theoretical Background

Chapter 2: Theoretical Background

2.1 Introduction

This chapter outlines the main theoretical concepts and technologies relevant to this research. It
starts with an overview of Reverse Osmosis (RO) systems and their challenges in water treatment.
The chapter then discusses the use of AI for Predictive Maintenance on datasets provided
by ONEE, utilizing machine learning techniques to enhance system reliability by predicting
potential failures. It also covers Large Language Models (LLMs) for Troubleshooting, which
provide AI-driven insights to maintenance teams dealing with RO systems. Additionally, the
chapter introduces Retrieval-Augmented Generation (RaG) and GraphRAG techniques, which
were used to retrieve information from technical manuals and data scraped from reliable sources,
therefore improving information retrieval and understanding in complex systems. These theories
and methods collectively support the development of innovative solutions for better managing
RO systems.

2.2 Reverse Osmosis

2.2.1 Principles of Reverse Osmosis

Reverse osmosis (RO) is a widely used water purification technology that uses a semi-permeable
membrane to remove ions, unwanted molecules, and larger particles from drinking water. The
process was developed in the mid-20th century to desalinate seawater and has since become
the dominant method for desalination due to its efficiency and effectiveness in producing fresh
water. RO is employed extensively for seawater desalination, wastewater treatment, and water
purification in industrial and municipal settings.

At its core, reverse osmosis relies on applying pressure to force water molecules across a semi-
permeable membrane. The membrane selectively allows water molecules to pass through while
retaining dissolved salts and other impurities. In this process, water flows from a region of
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higher solute concentration (i.e., saltwater or brackish water) to a region of lower concentration,
effectively separating fresh water from the solute.

Figure 2.1: Diagram of the Reverse Osmosis Process

The driving force behind reverse osmosis is the application of pressure that exceeds the natural
osmotic pressure of the water, which would normally cause water to move in the opposite
direction (from low to high concentration). By overcoming this natural tendency, RO systems
can produce highly purified water, with recovery rates typically ranging from 40% to 50%,
depending on the system’s design and the water source.

2.2.2 Historical Context and Development

The development of RO as a practical water treatment technology began in the 1950s and 1960s.
Researchers initially focused on creating membranes that could withstand the pressures necessary
for desalination while maintaining selectivity for water molecules. Early RO membranes were
made from cellulose acetate, but modern advancements led to the creation of more durable and
efficient thin-film composite membranes.

The technology gained significant traction in the following decades, especially as water scarcity
became a growing concern globally. Modern RO systems have evolved to become more energy-
efficient and reliable, largely driven by improvements in membrane technology and system
design [6]. The development of energy recovery devices has been instrumental in reducing the
overall energy consumption of RO plants, making them a more viable option for large-scale
desalination.
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2.2.3 Applications of Reverse Osmosis

The most prominent application of reverse osmosis is in seawater desalination. In countries with
limited freshwater resources but access to the ocean, RO has become a crucial technology for
ensuring a sustainable water supply. Large-scale seawater desalination plants, particularly those
using seawater reverse osmosis (SWRO), are now operational in countries like Spain, as well as
in many Gulf countries [7].

Beyond desalination, RO is also used for brackish water treatment, industrial wastewater recy-
cling, and water purification in various sectors. For instance, brackish water desalination can
augment water supplies in inland regions, although it faces challenges related to the management
of brine disposal [7].

2.2.4 Major Problems in Reverse Osmosis Systems

Reverse osmosis (RO) systems face several challenges that can significantly impact their perfor-
mance and efficiency. The two most prevalent issues are scaling and biofouling [8].

Scaling

Scaling occurs when dissolved minerals in the feed water precipitate on the membrane surface or
within the membrane pores. Common scaling compounds include calcium carbonate, calcium
sulfate, barium sulfate, and silicates. Scaling clogs the membrane pores, reducing the permeate
flux and increasing the pressure required to maintain the desired flow rate. If left unchecked,
scaling can lead to complete membrane failure [8].

Biofouling

Biofouling is the accumulation of microorganisms, such as bacteria, algae, and fungi, on the
membrane surface. These organisms form a biofilm that traps other particles, further exacerbating
the fouling problem [8] [9]. Biofouling increases the trans-membrane pressure, reduces permeate
flux, and can degrade product water quality [8]. It is considered the most complex and challenging
type of fouling in RO systems [9].

Other types of fouling, such as colloidal fouling and organic fouling, can also occur in RO
systems. Colloidal fouling involves the deposition of suspended particles, while organic fouling
is caused by the accumulation of organic matter on the membrane [10].

To mitigate these issues, RO systems employ various pretreatment methods, such as filtration,
disinfection, and chemical treatment [8] [9]. Effective pretreatment is crucial for reducing the
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fouling and scaling potential of the feed water [8]. Regular membrane cleaning and replacement
are also necessary to maintain the system’s performance and extend the membrane’s lifespan [10].

2.2.5 Challenges and Sustainability

Despite its widespread adoption, reverse osmosis faces several challenges. Energy consumption
remains a significant concern, as seawater desalination requires substantial energy input to
pressurize the water. According to Menachem Elimelech and William A. Phillip, current RO
technology consumes between 3 and 4 kWh per cubic meter of water produced, which is still
more energy-intensive than traditional freshwater treatment methods. The energy consumption
is compounded by environmental concerns associated with brine discharge and potential harm to
marine ecosystems due to the high salinity and chemical contaminants in the wastewater [7].

There is a growing emphasis on improving the sustainability of RO through innovations such
as advanced membranes, enhanced energy recovery, and the use of renewable energy sources.
New research is focused on the development of fouling-resistant membranes that can reduce the
need for chemical cleaning and pretreatment, further lowering operational costs and minimizing
environmental impact [7].

2.3 Artificial Intelligence Techniques for Predictive Mainte-
nance

2.3.1 Introduction

In recent years, the integration of artificial intelligence (AI) and machine learning (ML) tech-
niques in water treatment has gained significant attention, particularly for reverse osmosis (RO)
systems. These systems are crucial for desalination and water purification, yet they often face
challenges such as membrane fouling and performance degradation. The application of AI offers
promising solutions to predict water quality and identify potential problems early, enabling more
efficient management and maintenance of RO systems. This section explores the use of machine
learning for quality water prediction and problem identification, reviewing key studies that show
the effectiveness of these techniques in enhancing RO system performance.

Here are the main goals of applying AI for predictive maintenance :

• AI for Quality Water Prediction The goal here is to apply AI for water quality prediction
in RO systems to enhance the accuracy and efficiency of predicting key performance
indicators, such as salt passage, permeate flow rate, and pressure difference. By using
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machine learning models to analyze various input variables, AI can provide precise
predictions that help optimize water treatment processes and ensure consistent water
quality.

• AI for Problem Identification
The second goal is to use AI for the identification of potential problems in RO systems.
By employing data-driven models, we will be able to reduce operational costs, and extend
the lifespan of the RO membranes, thereby enhancing overall system reliability.

2.3.2 Algorithms used for Quality Water Prediction

In a study on factors affecting reverse osmosis membrane performance [11], the researchers
employed various machine-learning techniques to predict the output variables and analyze the
impact of different factors on RO membrane performance

In the context of machine learning for quality water prediction, models like ANNs, Random
Forests, and MLR play a critical role. Random Forest models excel in predicting salt passage,
using variables such as temperature and conductivity to assess membrane performance. Permeate
flow rate, a key indicator of water production efficiency, is effectively predicted by MLR, which
analyzes factors like feed flow rate and membrane characteristics. For pressure difference predic-
tions, ANNs are highly effective due to their ability to handle complex, non-linear relationships
between operational variables. These predictions are crucial for optimizing water treatment
processes and ensuring consistent water quality in RO systems.

2.3.3 Algorithms used in predictive maintenance

In a study on data-driven model approach related to the application of AI in the predictions [12],
Several AI and machine learning algorithms have proven effective for predictive maintenance
in reverse osmosis (RO) systems. Artificial Neural Networks (ANNs) are widely used for their
ability to model complex relationships between input variables and system performance, making
them effective for predicting non-linear factors like pressure differences. Random Forest is
another popular algorithm, known for its accuracy and robustness in large datasets, particularly
when predicting salt passage. Support Vector Machines (SVMs), known for their high accuracy,
are often used to simulate changes in flow rate and conductivity. Multiple Linear Regression
(MLR), though simpler than the others, is efficient for predicting variables like permeate flow
rate, especially when linear relationships exist between variables. Lastly, Long Short-Term
Memory (LSTM) networks, a form of deep learning, are used to predict time-dependent variables
like transmembrane pressure (TMP), allowing for accurate predictions of membrane fouling
using historical data.
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2.4 Large Language Models (LLMs)

2.4.1 Introduction

Large Language Models (LLMs) have become essential tools in the field of artificial intelligence,
particularly in natural language processing. Over time, these models have evolved from simple
rule-based systems to complex architectures capable of understanding and generating human-like
text. This section provides an overview of the key developments and technologies that have
shaped LLMs, highlighting their growing importance and the challenges they present in modern
AI applications.

2.4.2 Historical Background

Figure 2.2: Large language model (LLM) timeline.

It is necessary to explain that Large Language Models (LLMs) have experienced an incredible
transformation during the past few decades and have become the backbone of natural language
processing (NLP) and the overall artificial intelligence (AI) domain. The journey of LLMs began
in the 1950s and 1960s with early rule-based systems and initial attempts at machine translation,
such as the Georgetown-IBM experiment in 1954 [13], which demonstrated the potential of
computational language processing. In 1966, Joseph Weizenbaum’s creation of ELIZA [14], the
first chatbot, marked a significant milestone in simulating human conversation through pattern
recognition techniques.

The 1970s to 1990s witnessed a shift towards statistical models in NLP, with the adoption of
techniques like Hidden Markov Models (HMMs) and n-gram models, which utilized statistical
co-occurrences to predict word sequences. This period also saw the introduction of neural
networks in language modeling, most notably with the development of the Long Short-Term
Memory (LSTM) architecture in 1997 [15], addressing challenges like the vanishing gradient
problem in recurrent neural networks (RNNs).
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The deep learning revolution of the 2000s and 2010s significantly advanced LLMs. Researchers
like Yoshua Bengio pioneered the use of feed-forward neural networks for language modeling
in 2001, laying the foundation for deep learning in NLP. The introduction of Word2Vec in
2013 [16] allowed for the representation of words as continuous vectors in high-dimensional
space, enhancing the capture of semantic relationships. However, the most transformative
development came with the Transformer architecture in 2017 [17], which replaced RNNs with
self-attention mechanisms, enabling parallel processing and greatly improving training efficiency.

Since 2018, LLMs have rapidly evolved with the advent of pre-trained language models like
BERT and GPT-2, demonstrating the power of larger models trained on extensive datasets.
Notable models such as GPT-3, with 175 billion parameters, showcased the ability to perform a
wide array of tasks with remarkable fluency. This evolution continues with recent innovations
like GPT-4o and LLaMA3, which further push the boundaries of what LLMs can achieve, setting
the stage for even more advanced applications and research in the field.

2.4.3 The Evolution of Modern LLMs

The Transformer Architecture: The Building Block

The transformer architecture is the fundamental building block of all Large Language Models
(LLMs). The transformer architecture was introduced in the paper “Attention is all you need,”
published in December 2017 [17].

There are seven important components in transformer architecture. that work together to process
and generate text:

1. Inputs and Input Embeddings: The tokens entered by the user are transformed into
numerical representations called “input embeddings.” that the model can process. These
embeddings represent words as vectors in a mathematical space, enabling the model to
understand and compare word meanings based on their proximity.

2. Positional Encoding: Unlike traditional neural networks, transformers incorporate posi-
tional encoding to ensure that the model understands the sequence in which words appear,
which is crucial for maintaining the correct meaning in sentences.

3. Encoder: The encoder first tokenizes the input text into a sequence of tokens, such as
individual words or sub-words. It then applies a series of self-attention layers to generate
hidden states that encapsulate the meaning and context of the text at various abstraction
levels. This information is crucial for the next steps in the model.

4. Outputs (shifted right): During training, the decoder learns how to guess the next word
by using the preceding words, with the sequence shifted to the right.
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Figure 2.3: Transformer architecture.

5. Output Embeddings: the output must be changed to a numerical format, known as
output embeddings. Output embeddings are similar to input embeddings and go through
positional encoding, which helps the model understand the order of words in a sentence.
A loss function is used in machine learning, which measures the difference between a
model’s predictions and the actual target values.

6. Decoder: The positionally encoded input representation and the positionally encoded
output embeddings go through the decoder. The decoder is part of the model that generates
the output sequence based on the encoded input sequence. During training, the decoder
learns how to guess the next word by looking at the words before it.
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7. Linear Layer and Softmax: After the decoder produces the output embeddings, the linear
layer maps them to a higher-dimensional space. This step is necessary to transform the
output embeddings into the original input space. Then, we use the softmax function to
generate a probability distribution for each output token in the vocabulary, enabling us to
generate output tokens with probabilities.

A significant innovation in the transformer architecture is the Attention Mechanism. Unlike
previous models like RNNs and LSTMs, which process inputs sequentially, transformers can
analyze the entire input sequence simultaneously. This attention mechanism allows the model to
focus on different parts of the input sequence selectively, enabling it to capture long-term depen-
dencies and relationships between words more effectively. This capability makes transformers
particularly powerful in handling complex language tasks.

LLaMa3: Advancements in Large Language Modeling

LLaMA 3 (Large Language Model Meta AI) is part of the LLaMA family of language models,
including LLaMA and LLaMA 2. LLaMA 3 represents a significant leap in the capabilities
of open-source AI models, designed to compete with some of the most powerful proprietary
models [18].

LLaMA 3 introduces several innovations in its architecture and training process. It utilizes a
decoder-only transformer architecture and incorporates an expanded tokenizer with a vocabulary
of 128,000 tokens, which enhances its ability to process and generate text across multiple
languages. This version also features Grouped-Query Attention (GQA) to improve inference
efficiency and scalability, particularly for handling longer context windows, making it more
adept at tasks like summarization and complex reasoning [19].

The training of LLaMA 3 involved a massive dataset of over 15 trillion tokens, significantly larger
than that used for LLaMA 2, with a strong emphasis on high-quality multilingual and domain-
specific data, including coding and reasoning tasks. This extensive dataset, combined with
advanced training techniques such as data, model, and pipeline parallelization across thousands
of GPUs, allowed LLaMA 3 to achieve state-of-the-art performance on various benchmarks, and
outperform some of the most powerful proprietary models [18].

GPT-4o: Pushing the Boundaries of LLM Capabilities

On May 13, 2024, OpenAI introduced GPT-4o, its latest flagship large language model (LLM).
The “o” in GPT-4o stands for “Omni,” which signifies the model’s ability to handle multiple
modalities, such as text, audio, and images, all within a single model. This multimodal approach
enables GPT-4o to engage in real-time conversations, answer questions, generate text, and process
various forms of media more efficiently than its predecessors, including GPT-4 Turbo [20].
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Figure 2.4: LLaMa3 Human evaluation (aggregated).

GPT-4o represents a major advancement in generating high-quality text efficiently. One of its
key strengths is the ability to generate text at twice the speed of its predecessor, GPT-4 Turbo,
while reducing costs by 50

The model supports a context window of 128,000 tokens, enabling it to manage extensive
and complex text inputs and outputs. This large context window is particularly valuable for
tasks that require sustained, coherent text generation across multiple steps, such as long-form
content creation, detailed reports, or intricate dialogue systems. Moreover, GPT-4o can produce
up to 4,096 tokens per request, allowing it to generate substantial amounts of text in a single
output [21].

2.4.4 Challenges in Implementing LLMs

The implementation of Large Language Models (LLMs) presents several significant challenges:

• Non-Deterministic Responses: LLMs can produce variable outputs for the same input,
which complicates their reliability in scenarios requiring consistent responses, such as in
medical or legal contexts. Developers need to implement robust validation mechanisms to
ensure accuracy.

• Observability and Monitoring: The complexity of LLM workflows necessitates com-
prehensive monitoring to evaluate the quality of outputs and detect errors. Tools for
observability can help trace issues across LLM applications, allowing teams to analyze
performance and security risks effectively.
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Figure 2.5: GPT-4o Human evaluation.

• Scalability and Resource Management: LLMs require significant computational re-
sources, which can lead to challenges in scaling applications to meet user demand. Efficient
resource management is crucial for maintaining performance and cost-effectiveness.

• Security Risks: LLMs can be vulnerable to security exploits, such as prompt injection
attacks, which may lead to data exposure or inappropriate outputs. Implementing security
measures is essential to safeguard against these vulnerabilities [22].

2.4.5 Conclusion

The evolution of Large Language Models has been marked by continuous innovation and signifi-
cant breakthroughs, from the early days of rule-based systems to the sophisticated, multimodal
models of today. As demonstrated by the advancements in LLaMA3 and GPT-4o, LLMs have
reached new heights in their ability to process and generate language across diverse contexts
and modalities. However, the implementation of these models is not without challenges, such as
ensuring consistency, managing computational resources, and safeguarding against security risks.
As we transition to the next section on Retrieval-Augmented Generation (RAG), it becomes
clear that the future of LLMs will likely involve hybrid approaches that combine the strengths of
LLMs with other AI techniques to address these challenges and further enhance the capabilities
of language-based AI systems.
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2.5 Retrieval-Augmented Generation (RaG)

2.5.1 Introduction

In recent years, the field of natural language processing (NLP) has seen remarkable advancements,
particularly with the development of large language models (LLMs) that have revolutionized
tasks such as text generation, translation, and question-answering. However, these models, while
powerful, often struggle with factual accuracy, sometimes producing plausible-sounding but
incorrect or nonsensical responses—a phenomenon known as “hallucination.” To address these
challenges, researchers have introduced Retrieval-Augmented Generation (RAG), a sophisticated
architecture that enhances the relevance and accuracy of generated responses by integrating
retrieval mechanisms with LLMs.

At its core, RAG leverages a dual approach merging traditional search functionalities with the
dynamic prompting capabilities of LLMs. This hybrid model enables the system to ground its
responses in retrieved data, providing a robust foundation for generating more accurate answers.

2.5.2 Historical Background

The concept of RAG builds upon the evolution of information retrieval and natural language
generation techniques. Some Early efforts in the 2000s to combine retrieval-based methods with
generative models aimed primarily at improving information retrieval systems by integrating
simple generative models for response synthesis. However, the true potential of RAG was realized
with the advent of large-scale pre-trained language models in the late 2010s, such as BERT and
GPT. These models provided a powerful foundation for natural language understanding and
generation, but they often struggled with factual accuracy, leading to the integration of retrieval
mechanisms.

Formalizing RAG as an architecture was introduced by researchers at Facebook AI in 2020 [23],
who demonstrated that combining a dense retrieval mechanism with generative transformers
significantly improved the quality of the generated text. By grounding it in retrieved documents.
This advancement marked a major step forward in the development of AI systems, enabling them
to produce more truthful and contextually relevant responses.
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2.5.3 How RAG Works

Figure 2.6: Workflow of RAG.

Without RAG, the LLM takes the user input and creates a response based on the information it
was trained. RAG introduces an information retrieval component that first utilizes user input to
pull information from a new data source. The user query and the relevant information are both
given to the LLM. The LLM uses the new knowledge and training data to create better responses.

The new data outside of the LLM’s original training dataset is called external data. It can come
from multiple data sources, such as APIs, databases, or document repositories. These data sources
can be in various formats, including files, database records, or long-form text. A technique called
“chunking” is employed to manage large and complex datasets effectively. Chunking involves
breaking down the data into smaller, more manageable pieces, or “chunks,” which are then
processed individually. This allows the system to handle vast amounts of information efficiently.
Each chunk is processed using embedding language models, which convert the information into
numerical representations and store it in a vector database, creating a knowledge library that the
generative AI models can access and understand.

Once the external data is chunked and embedded, the system performs a relevancy search by
converting the user query into a vector representation and matching it against the entries in
the vector database. For example, consider a smart chatbot that can answer human resource
questions for an organization, if an employee asks, “How much annual leave do I have?”, the
system will retrieve annual leave policy documents alongside the individual employee’s past
leave record. These specific documents will be returned because they are highly relevant to what
the employee has input. The relevancy was calculated and established using mathematical vector
calculations, often using “cosine similarity”.

Next, the RAG model augments the user input (or prompts) by adding the relevant retrieved data
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in context. This step uses prompt engineering techniques to communicate effectively with the
LLM. The augmented prompt allows the large language models to generate an accurate answer
to user queries [24].

2.5.4 Advantages of RAG

RAG offers several advantages:

• Improved Accuracy: By accessing up-to-date external data, RAG helps mitigate the
inaccuracies arising from LLMs static training data [25].

• Reducing inaccurate responses, or hallucinations: Integrating retrieved information
reduces the likelihood of generating incorrect or fabricated information (hallucinations)
[26]. Trust and Transparency: By allowing models to cite sources, RAG enhances user
trust in the generated content, providing a mechanism for users to verify the claims made
by the AI [27].

• Flexibility and Efficiency: RAG allows organizations to customize LLM outputs to
specific domains or contexts without the high costs and time associated with retraining
models. This adaptability is particularly valuable for customer support and knowledge
management systems applications [24].

• Being efficient and cost-effective: Compared to other approaches to customizing LLMs
with domain-specific data, RAG is simple and cost-effective. Organizations can deploy
RAG without needing to customize the model. This is especially beneficial when models
need to be updated frequently with new data [28].

2.5.5 Applications of RAG

RAG has found applications across various domains, demonstrating its versatility and effective-
ness:

• Customer Support: Automated chatbots powered by RAG can provide accurate answers
to customer inquiries by retrieving relevant information from knowledge bases or FAQs.

• Content Creation: RAG can assist writers and content creators by generating articles or
reports that are grounded in the latest research and data, ensuring accuracy and relevance
[25].
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• Educational Tools: RAG can enhance learning platforms by providing students with
contextually rich explanations and answers, drawing from a wide array of educational
resources.

• Research Assistance: RAG systems can aid researchers in quickly finding relevant
literature and synthesizing information, streamlining the research process.

2.5.6 Challenges and Future Directions

Despite its advantages, the RAG architecture is not without challenges. Key issues include:

• Retrieval Quality: The effectiveness of RAG relies heavily on the quality of the retrieved
documents. Poor retrieval can lead to inaccurate or irrelevant responses.

• Computational Complexity: The combined processes of retrieval and generation can be
computationally intensive, necessitating efficient algorithms and infrastructure.

• Bias and Fairness: Like all AI systems, RAG models can inherit biases present in
the training data or retrieved documents, raising concerns about fairness and ethical
implications.

Future research in RAG may focus on improving retrieval algorithms, enhancing the integration of
diverse data sources, and addressing ethical considerations to ensure responsible AI deployment.
One promising direction is the development of GraphRAG, an extension of the RAG framework
that explores new ways to leverage graph-based data structures in the retrieval process, promising
further advancements in the field.

2.6 GraphRAG

2.6.1 Introduction

The paper titled “From Local to Global: A Graph RAG Approach to Query-Focused Summa-
rization” [29] presents a new method for improving the capabilities of large language models
(LLMs) in summarizing large datasets. This method, Graph RAG, aims to address the limitations
of existing retrieval-augmented generation (RAG) techniques, particularly when dealing with
global questions that require insights from text.
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2.6.2 Motivation

The motivation behind the development of Graph RAG originates from the limitations of tradi-
tional retrieval-augmented generation (RAG) methods when addressing global questions that
require comprehensive insights from large datasets. While RAG effectively retrieves localized
information to answer specific queries, it struggles with general, query-focused summariza-
tion tasks, such as identifying themes within texts. This challenge is particularly noticeable
when dealing with large volumes of data, where the context window of large language models
(LLMs) may not encompass all relevant information. Consequently, the authors propose a more
robust solution that combines the strengths of RAG and query-focused summarization (QFS)
by utilizing a graph-based indexing system. This system allows for the efficient organization
of information into communities of related entities, enabling the generation of coherent and
comprehensive summaries that can effectively respond to global queries. By leveraging com-
munity detection algorithms within graphs, Graph RAG improves the ability to summarize and
synthesize information from big datasets, making it a powerful advancement over traditional
RAG methods [29].

2.6.3 Overview of Graph RAG

Key Concepts

• Retrieval-Augmented Generation (RAG): A technique that combines retrieval of relevant
information from external sources with generative capabilities of LLMs to answer questions
or summarize texts.

• Query-Focused Summarization (QFS): A task that involves generating summaries that
are specifically tailored to answer a given query, rather than just extracting relevant text.

The authors argue that traditional RAG methods struggle with global questions (e.g., “What
are the main themes in the dataset?”) because they typically focus on localized text retrieval.
In contrast, the Graph RAG approach integrates a graph-based indexing system that allows for
more comprehensive summarization.
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Methodology

Figure 2.7: Graph RAG pipeline using an LLM-derived graph index of source document text.

Graph-Based Indexing

1. Entity Knowledge Graph Creation: The first step involves extracting entities and their
relationships from the source documents to create a graph index. This is done using LLMs
which analyze text chunks to identify entities, relationships, and relevant claims.

2. Community Detection: The graph is then split into communities of closely related nodes
using community detection algorithms (Leiden algorithm). This method allows the model
to summarize related entities together, improving the relevance and coherence of the
generated summaries.

3. Community Summarization: Each community is summarized independently, creating a
set of community summaries that can be used to answer user queries.

4. Answer Generation: When a user poses a question, the system generates partial answers
from the community summaries. These partial answers are then combined and summarized
to produce a final, comprehensive response.
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Evaluation and Results

The authors evaluated the Graph RAG approach using two datasets, each containing around one
million tokens. They compared the performance of their method against traditional RAG and
other summarization techniques. The results indicated that Graph RAG significantly outper-
formed naive RAG in terms of the comprehensiveness and diversity of the generated answers [29].

The method effectively handled global sensemaking questions, demonstrating its efficiency in
summarizing large volumes of text [29].

The findings suggest that Graph RAG can facilitate better understanding and insights from large
datasets, making it a valuable tool for tasks that require comprehensive analysis, such as scientific
research, intelligence analysis, and educational purposes. In summary, this approach not only
addresses the limitations of existing methods but also opens doors for future research in improved
sense-making and information retrieval.
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Chapter 3: Predicting water quality and
predictive maintenance using
machine learning

3.1 Introduction

In this section, we explore the use of machine learning techniques for predicting water quality
and implementing predictive maintenance in reverse osmosis (RO) systems. Ensuring high water
quality and system reliability are crucial for the efficient operation of RO systems, which are
widely used in water treatment processes. In this study, we used datasets provided by ONEE
Kenitra and ONEE Khenifra to make our prediction. By leveraging data-driven models, we aim
to anticipate changes in water quality and detect potential system failures before they occur,
allowing for proactive maintenance and reducing downtime. This part covers the entire process,
from the motivation and objectives behind this approach to data collection and pre-processing,
model development, results, and evaluation. Additionally, we discuss the limitations of our
current models and suggest directions for future research to further enhance predictive capabilities
in water quality management and system maintenance.
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3.2 Predicting water quality in RO systems

Figure 3.1: Workflow of the Water Quality Prediction task

3.2.1 Motivation and Objectives

RO systems are widely used to purify water by removing salts, contaminants, and other impurities,
but their performance can be affected by various factors, including changes in feed water quality,
membrane fouling, and operational conditions. By accurately predicting water quality, operators
can ensure that the RO systems perform optimally, minimizing the risk of producing substandard
water and reducing operational costs.

This research was initiated at the request of ONEE to better understand the factors that most
influence water quality in RO systems. One of the key indicators of water quality in this context
is the conductivity level, which measures the ability of water to conduct electricity—a direct
proxy for the concentration of dissolved salts and impurities. For effective water purification, the
conductivity level in the permeate (purified water) should be relatively low. High conductivity
indicates that the RO membrane is allowing too many salts and other contaminants to pass
through, suggesting a decline in performance.

The primary objectives of this chapter are:

1. Develop Machine Learning Models for Water Quality Prediction: To create models
that can accurately predict key water quality parameters, especially conductivity levels,
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in RO systems. This involves analyzing input data from sensors and operational logs to
identify patterns and factors that significantly affect conductivity.

2. Identify Influencing Factors: To determine the factors that most influence water qual-
ity, particularly conductivity, in RO systems. Understanding these factors will help in
optimizing operational parameters and improving RO system performance.

3. Enhance Operational Efficiency and Reliability: To use predictive models to anticipate
changes in water quality and adjust operational parameters accordingly, thereby improving
the overall efficiency and reliability of RO systems.

3.2.2 Data collection and pre-processing

Features

Figure 3.2: RO Data from ONEE Kenitra.

Here is a brief explanation of the parameters in the dataset:

1. DATE_HEURES: This represents the date and time of the measurement, indicating when
the data was collected.

2. Precarts_PI203: This parameter represents the pressure differential across a specific
section of the RO system (such as a membrane or filter), measured in bars. It is used to
monitor the performance and detect fouling or clogging.

3. Sortie_pompe: This is the output pressure of a pump in the RO system, indicating the
pressure at which water is being fed into the system or through a particular section.

4. Primaire_PI400: This parameter represents the primary stage pressure within the RO
system, showing the pressure level in the initial stage of water treatment.

5. Secondaire_PI302: This is the secondary stage pressure, indicating the pressure level in
the second stage of the RO process.

6. Tertiaire_PI403: This parameter denotes the tertiary stage pressure, which is the pressure
level in the third stage of the RO system.
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7. perm_PI304: This refers to the permeate pressure, which is the pressure of the purified
water (permeate) that passes through the RO membranes. Lower permeate pressure can
indicate effective water purification.

8. PermFIT304: This represents the permeate flow rate, measured in cubic meters per hour
(m³/h). It shows the volume of water being purified and passing through the system.

9. Conc_FIT403: This parameter is the concentrate flow rate, indicating the volume of water
that contains the rejected salts and impurities. It is measured in m³/h and helps assess the
system’s efficiency.

10. Entrée_AIT206: This is the feed water conductivity, measuring the ability of the water
entering the RO system to conduct electricity, which correlates with the concentration of
dissolved salts and impurities.

11. Perm_AIT304: This represents the conductivity of the permeate water, which indicates
the quality of the purified water. Lower conductivity means better water quality with fewer
dissolved salts.

12. conc_mesur: This parameter indicates the concentration of salts and impurities in the
concentrate or brine stream of the RO system, helping to monitor the rejection rate of
contaminants.

13. T°C_TIT100: This represents the temperature of the water within the RO system, which
can affect membrane performance and water quality.

14. Perm_PH_mesur: This parameter measures the pH level of the permeate water, indicating
its acidity or alkalinity. It is crucial for assessing water quality and the potential impact on
distribution systems.

15. Entrée_PHAIT204: This is the pH level of the feed water entering the RO system, which
can influence the efficiency of the RO process and membrane lifespan.

For our research, the primary focus is on the conductivity parameter, specifically the conductivity
of the permeate water (Perm_AIT304), as it is a key indicator of water quality in reverse osmosis
(RO) systems. Conductivity will be the target variable in our predictive models. Our goal is
to accurately forecast changes in water quality by predicting this parameter based on other
operational data. Additionally, we will not consider time (DATE_HEURES) as a predictor
variable in our models, as our focus is on understanding the relationships between the operational
parameters and water quality, rather than on temporal trends.
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Data cleaning and pre-processing

During the data cleaning step, we performed several operations to prepare the dataset for machine
learning analysis.

First, we converted all relevant numerical data into float format to ensure consistent data types
across the dataset, which is essential for accurate calculations and model training.

Next, we addressed the issue of missing values, which can negatively impact the performance
of machine learning models. To handle this, we replaced all null values with the mean of their
respective columns. The decision to replace missing values with the mean of their respective
columns was made after consulting with experts in the field who emphasized that using the mean
was a suitable approach because it preserves the overall distribution and typical behavior of
the data, reflecting normal operational conditions. By filling in missing values with the mean,
we ensured that the dataset remains representative of typical system performance, which is
crucial for developing accurate and reliable predictive models. This expert input helped us make
informed choices during the data cleaning process, aligning our methodology with industry best
practices.

Finally, we dropped columns that were empty as they wouldn’t be helpful in the prediction
process.

After completing these cleaning steps, we saved the newly cleaned dataset in a new CSV file,
ensuring that it is ready for subsequent analysis and model development.

Figure 3.3: Clean RO data from ONEE Kenitra.

Correlation

The figure illustrates the correlation matrix for the parameters in the dataset, using a color
gradient to indicate the strength and direction of the relationships between them. Darker red
colors suggest strong positive correlations, while darker blue colors indicate strong negative
correlations, with lighter colors representing weaker or no correlations.

It shows a strong negative correlation with “conc_mesur” and “Entrée_AIT206,” indicating
that as the values of these parameters increase, the value of “Perm_AIT304” tends to decrease.
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Figure 3.4: RO data from ONEE Kenitra correlation matrix.

Additionally, “Perm_AIT304” has a moderate negative correlation with “Sortie_pompe” and
“Primaire_PI400,” suggesting that these parameters also inversely affect “Perm_AIT304” to a
lesser extent. These correlations are important as they provide insights into how different factors
within the reverse osmosis system interact with “Perm_AIT304,” which is crucial for predicting
water quality outcomes and optimizing the system’s performance.

3.2.3 Results and Discussion

Random Forest algorithm

Random forest is a commonly used machine learning algorithm, trademarked by Leo Breiman
and Adele Cutler, that combines the output of multiple decision trees to reach a single result.
Its ease of use and flexibility have fueled its adoption, as it handles both classification and
regression problems [30]. Random Forests are resilient to overfitting, especially when dealing
with datasets with many variables, by averaging out the predictions of multiple uncorrelated trees.
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This algorithm is also robust against noisy data, making it suitable for real-world applications
where data might be incomplete or contain errors.

Algorithm used Random Forest

Testing size 20%

Mean Squared Error 5.528

Mean Absolute Error 1.238

Table 3.1: Prediction Results of Random Forest on data from ONEE kenitra.

XGboost algorithm

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient,
flexible and portable. It implements machine learning algorithms under the Gradient Boosting
framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve
many data science problems in a fast and accurate way [31]. XGBoost builds an ensemble of
trees sequentially, where each tree tries to correct the errors of the previous one by focusing
on the residuals. This approach allows XGBoost to perform exceptionally well in predicting
conductivity by effectively capturing complex, non-linear relationships and interactions between
various parameters like flow rates, pressures, and temperatures. Additionally, its ability to handle
missing data and support parallelization makes it a fast and accurate option for predicting water
quality metrics such as conductivity.

Algorithm used XGBoost

Testing size 20%

Objective reg:squarederror

Mean Squared Error 4.777

Mean Absolute Error 1.240

Table 3.2: Prediction Results of XGBoost on data from ONEE kenitra.

Linear Regression algorithm

Linear regression analysis is used to predict the value of a variable based on the value of another
variable. The variable you want to predict is called the dependent variable. The variable you are
using to predict the other variable’s value is called the independent variable [32]. While simpler
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than Random Forest and XGBoost, Linear Regression can still be valuable in conductivity
prediction, especially if the relationship between the features and conductivity is approximately
linear. This algorithm is easy to interpret, making it a good choice for understanding the direct
impact of each parameter on conductivity. However, its simplicity means it might not capture
complex interactions or non-linear relationships as effectively as the other algorithms.

Algorithm used Linear Regression

Testing size 20%

Mean Squared Error 2390.791

Mean Absolute Error 6.271

Table 3.3: Prediction Results of Linear regression on data from ONEE kenitra.

Discussion

According to Table 3.2, the results show that the XGBoost algorithm has the best performance
for predicting conductivity in RO systems, with the lowest Mean Squared Error (MSE) of
4.777 and a Mean Absolute Error (MAE) of 1.240, showing its high accuracy in capturing the
complex relationships in the data. In Table 3.1, the Random Forest algorithm also performs
well, with an MSE of 5.528 and an MAE of 1.238, suggesting it effectively handles non-linear
patterns, although slightly less accurately than XGBoost. In contrast, as shown in Table 3.3,
the Linear Regression model shows significantly worse performance, with a very high MSE
of 2390.791 and an MAE of 6.271, reflecting its inability to model the non-linear relationships
in the dataset effectively. These results highlight that for predicting water quality, specifically
conductivity, in RO systems, tree-based algorithms like XGBoost and Random Forest are
much more effective than Linear Regression, which fails to account for the complexity of the
data.
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3.3 Predictive maintenance using machine learning

Figure 3.5: Workflow of the task : Predicting Malfunctions within RO systems

3.3.1 Motivation and Objectives

Predictive maintenance using machine learning is a crucial component of modern industrial
operations, especially in systems like reverse osmosis (RO) that are sensitive to operational
inefficiencies and downtime. The primary motivation behind implementing predictive mainte-
nance in RO systems is to optimize the lifespan and performance of the equipment, minimize
unexpected breakdowns, and reduce maintenance costs. Traditional maintenance approaches,
such as reactive or scheduled maintenance, often lead to unnecessary downtime and can result in
significant costs due to either premature maintenance actions or unexpected equipment failures.
By leveraging machine learning algorithms, we can analyze historical data and detect patterns
that indicate potential failures.

The objectives of implementing predictive maintenance using machine learning in RO systems
are threefold: firstly, to enhance the reliability and efficiency of the systems by predicting failures
or performance degradation; secondly, to reduce operational costs associated with unplanned
downtimes and repairs by going from reactive to proactive maintenance strategies; and thirdly, to
improve decision-making processes by providing data-driven insights into the operational status
and maintenance needs of the equipment. These objectives aim to ensure the continuous and
optimal operation of RO systems, thereby contributing to higher productivity and better resource
management.
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3.3.2 Data collection and pre-processing

For this section of the project, we obtained data from ONEE Khenifra, which provided us with
operational records from their reverse osmosis (RO) systems. The data contained multiple types
of issues related to system performance, however, to streamline the predictive maintenance
model, it was necessary to simplify these various problem types into a more manageable format
for binary classification. We manually labeled the data, categorizing each entry into one of two
states: “problem” (represented as 1) or “no problem” (represented as 0). This binary approach
allowed us to focus on the fundamental task of identifying whether a problem exists, rather
than predicting specific problem types, thus making the model more effective and efficient in
a real-world predictive maintenance context. The pre-processing phase also included cleaning
the data, handling missing values, and normalizing the feature set to ensure consistency and
accuracy in the model’s predictions.

Correlation

Figure 3.6: RO data from ONEE Khenifra correlation matrix.
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The figure shows the correlation between various parameters of the reverse osmosis (RO) system
and the binary labels indicating the presence or absence of a problem. From the heatmap, it is
evident that parameters such as “Conductivité perméats 1er étage CQ AIT 141” (Permeate Con-
ductivity of Stage 1), “Conductivité perméats 2ème étage CQ AIT 170” (Permeate Conductivity
of Stage 2), “Temp.” (Temperature), and “Débit Concentrats” (Concentrate Flow Rates) have
a significant impact on the labels. These parameters show a higher correlation with the label,
suggesting they are critical indicators for predicting the presence of issues in the RO system.
This information is valuable for focusing predictive maintenance efforts on the most influential
factors affecting system performance.

3.3.3 Results and Discussion

The Random Forest and XGBoost models were applied to predict problems in the reverse
osmosis (RO) system using a testing size of 20%, and both showed promising results in
terms of predictive accuracy. In Table 3.4, The Random Forest model achieved a Mean
Squared Error (MSE) of 0.036 and a Mean Absolute Error (MAE) of 0.055, indicating a
reasonable level of accuracy, though the slight difference between MSE and MAE suggests
occasional larger deviations. On the other hand, according to the results in Table 3.4, the
XGBoost model also achieved an MSE of 0.036 but with a lower MAE of 0.036, highlighting
its consistency and ability to make more precise predictions without significant outliers. The
XGBoost model was optimized with specific hyperparameters, such as a subsample rate of
0.8, 500 estimators, a minimum child weight of 2, a maximum depth of 20, a learning rate of
0.4, gamma of 0.001, and a column sample by tree of 0.6, which contributed to its superior
performance. Furthermore, XGBoost demonstrated high precision and recall for both classes,
with precision and recall values of 0.97 and 0.98 for class 0.0 (no problem) and 0.96 and
0.94 for class 1.0 (problem), resulting in F1-scores of 0.97 and 0.95, respectively. This
balanced performance across both classes suggests that XGBoost is slightly more robust than
Random Forest for the predictive maintenance of RO systems, offering better generalization
and reliability in identifying potential issues.

Algorithm used Random Forest

Testing size 20%

Mean Squared Error 0.036

Mean Absolute Error 0.055

Table 3.4: Prediction Results of Random Forest on data from ONEE Khenifra.
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Algorithm used XGBoost

Testing size 20%

Objective binary:logistic

Mean Squared Error 0.036

Mean Absolute Error 0.036

Table 3.5: Prediction Results of XGBoost on data from ONEE Khenifra.

3.4 Limitations

One of the major limitations encountered in this study was the insufficient amount of data
available for implementing sequential models, such as Long Short-Term Memory (LSTM)
networks. Sequential models like LSTM are designed to analyze and predict patterns in time
series data, where the sequence and timing of data points play a crucial role. These models
are effective in scenarios where past states significantly influence future outcomes, making
them ideal for predicting system behaviors over time. However, due to the limited quantity and
temporal resolution of the data provided for both parts of our study, we were unable to establish
the necessary sequences that would allow LSTM or similar algorithms to operate effectively.
This restriction prevented us from fully leveraging the potential of sequential models to capture
long-term dependencies and trends within the data, which could have enhanced the accuracy and
robustness of our predictive maintenance efforts.
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Chapter 4: Troubleshooting of problems
related to RO systems using
LLMs

4.1 Introduction

This chapter focuses on the use of Large Language Models (LLMs) for troubleshooting problems
related to Reverse Osmosis (RO) systems. RO systems are widely used in water treatment
facilities for their ability to remove impurities and provide clean water. However, maintaining the
optimal performance of these systems can be challenging due to various operational issues, such
as membrane fouling, fluctuations in feedwater quality, and equipment malfunctions. Traditional
troubleshooting methods often rely on extensive human expertise and can be time-consuming,
especially when dealing with complex or uncommon issues. By applying LLMs, we aim
to streamline the troubleshooting process, providing rapid and accurate solutions based on
comprehensive data analysis and knowledge extraction from multiple reliable sources, including
technical manuals and historical data. This approach not only improves response times but also
enhances the consistency and quality of the troubleshooting process.
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4.2 Motivation and Objectives

4.2.1 Motivation

Figure 4.1: Illustration of how much time it takes to diagnose an issue occurring in a RO system

The motivation for employing LLMs in troubleshooting RO systems comes from the high
complexity of these systems and the demand for more efficient maintenance strategies. RO
systems are essential to many industrial and water treatment applications, where downtime
performance can have significant consequences as shown in the figure below. Traditional
troubleshooting often involves sifting through vast amounts of technical documentation and
data logs, which can be inefficient and prone to human error. Additionally, the availability of
experienced technicians who can diagnose and resolve these issues quickly is often limited,
especially in remote or under-resourced locations. The ability of LLMs to understand and process
natural language enables them to identify and diagnose issues effectively, providing actionable
recommendations that can be implemented swiftly, thus minimizing downtime and ensuring the
continuous operation of RO systems.

4.2.2 Objectives

The primary objective of this part is to develop an advanced troubleshooting framework for RO
systems using LLMs. To achieve this, several key goals have been established as shown in Figure
4.2.
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Figure 4.2: Objectives of using LLMs to troubleshoot RO-related issues

• Implement a robust data scraping mechanism to collect and compile data from various
reliable sources

• Apply Retrieval-Augmented Generation (RAG) and GraphRAG techniques to enhance the
contextual understanding and accuracy of the information retrieved by the LLMs

• Experiments with different versions of these models, fine-tuning them based on the specific
requirements

• Constant feedback from experts and then refinement of the models

First, we aim to implement a robust data scraping mechanism to collect and compile data from
various sources, including technical manuals, operational logs, and other relevant documentation
suggested by the Aquadviser team. This step is crucial for creating a comprehensive dataset that
the LLMs can use to learn and infer from.

Second, we need to apply Retrieval-Augmented Generation (RAG) and GraphRAG techniques
to improve the contextual understanding and accuracy of the information retrieved by the LLMs.
These methods combine the retrieval of relevant data with the generation of responses, enabling
the models to provide more accurate and contextually relevant troubleshooting advice. Third, we
intend to run a series of experiments with different versions of these models, fine-tuning them
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based on the specific requirements of RO systems and evaluating their performance through
expert feedback. This iterative process will involve assessing the models’ ability to identify
issues, suggest appropriate corrective actions, and provide clear explanations that are easily
understood by operators and technicians.

Ultimately, the goal is to create a reliable, AI-driven troubleshooting system that can enhance the
efficiency and effectiveness of RO system maintenance, reduce downtime, and improve water
treatment outcomes.

4.3 Data collection and pre-processing methods

4.3.1 Tools : Selenium for data scrapping

Selenium is a powerful tool for controlling web browsers through programs and performing
browser automation. It is functional for all browsers, works on all major OS, and its scripts are
written in various languages i.e Python , Java , C# , etc, we will be working with Python [33].

Selenium was chosen for this project due to its robust capabilities for automating web browsing
and data scraping. Given the diverse range of online sources from which we needed to extract
information, Selenium provided the flexibility and control necessary for navigating complex
websites, interacting with dynamic content, and efficiently capturing the required data.

One of the main reasons for using Selenium is its ability to handle websites that require user
interaction, such as logging in, filling out forms, or clicking through multiple pages to access
specific data. These tasks are challenging for simpler scraping tools that are not designed to
handle JavaScript-heavy or interactive web pages. Selenium, however, operates by automating
browser actions in real-time, allowing it to mimic human interaction closely. This feature was
particularly useful for collecting data from technical forums, online manuals, and documentation
pages that required user authentication or contained dynamic content that could not be easily
accessed through static scraping methods.

Overall, Selenium was instrumental in our ability to gather comprehensive and accurate datasets
from a wide range of online sources, forming a solid foundation for the subsequent application
of machine learning models and Large Language Models (LLMs) in troubleshooting RO system
problems.

4.3.2 Workflow

This general workflow for data scrapping using Selenium involves several key steps to ensure
efficient and automated extraction of information from web-based sources. First, the environment
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Figure 4.3: Workflow of data scrapping using Selenium

is set up by installing Selenium and configuring the necessary WebDriver, such as ChromeDriver,
to control the browser. The WebDriver is then initialized to start a new browser session, and it
navigates to the target webpage containing the desired data. Once on the webpage, Selenium’s
explicit wait functions are employed to ensure that all elements are fully loaded and ready for
interaction. The workflow then focuses on locating specific elements, such as headers, buttons,
or tables, that need to be interacted with to reveal or access the data. Using commands to
scroll, click, or expand sections, Selenium makes these elements visible or initiates downloads
of necessary files. During this process, error-handling mechanisms are crucial to manage any
potential issues, such as missing elements or failed downloads, ensuring a robust data collection
procedure. After all relevant data has been collected and downloads are complete, the browser
session is closed to release resources. Finally, post-processing is performed on the collected data,
such as organizing files and preparing them for further analysis.

This comprehensive workflow allows for automated, repeatable, and reliable data extraction from
dynamic web pages.
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4.4 Rag integration

4.4.1 Introduction

In this section, we describe the comprehensive experiments conducted over a two-month period,
during which we explored different language models and fine-tuned their parameters to optimize
performance for specific tasks related to water desalination systems. The data used in these
experiments were collected by scraping various desalination-related websites recommended by
Aquadviser. This dataset includes a diverse range of materials such as case studies, data sheets,
Q&A files, and technical manuals, all of which are pertinent to the field of reverse osmosis (RO)
systems.

Our approach began with the implementation of the open-source LLM, Llama3, with Retrieval-
Augmented Generation (RAG), which we applied first to the entire collection of documents and
then exclusively to the Q&A file provided by Dupont. We also experimented with the newly
released Gemini model on the Q&A file to compare its performance. Following these initial trials,
we decided to shift our focus to a more robust language model, OpenAI’s GPT-4o. To enhance
the relevance and accuracy of the responses, we employed Retrieval-Augmented Generation
(RAG) on a single, most critical document as declared by Aquadviser, as it contains most of the
answers: Filmtech: the technical manual.

The effectiveness of these models and configurations was assessed by applying them to a set
of 20 diverse RO-related questions that were carefully crafted by the Aquadviser team to cover
a broad spectrum of scenarios and challenges encountered in desalination processes. Through
iterative feedback and continuous engineering of new solutions based on these evaluations,
we refined our approach to better fit the needs of the industry, ultimately leading to a deeper
understanding of how these advanced language models can be leveraged for technical and
operational improvements in desalination systems.
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4.4.2 Using Llama3

On Q&A file Dupont

Model name Llama-3-8B-it

Open source Yes

Embedding google/text-embedding-004

Data Q&A Dupont

Top_k 1

System_Prompt

As an assistant for question-answering tasks specializing
in Reverse Osmosis (RO) Water Treatment Systems. Your
goal is to provide accurate, concise, and helpful informa-
tion, while including URLs mentioned in the Context as
references within the text. Ensure your answers are direct,
clear, logical, and tailored to the user’s question, aiming to
solve their problem effectively. If additional information is
needed, indicate this explicitly

LLM Temperature 0.9

Table 4.1: Configuration details for the Llama-3-8B-it model used on the Q&A file Dupont.

The table above describes the first model we experimented with, that is Llama-3-8B-it. Using
the open-source Llama-3 variant allows for customization, while the google/text-embedding-004
model provides high-quality embedding that enhance contextual understanding. The data sourced
from Dupont’s Q&A file ensures domain-specific knowledge, and setting Top_k: 1 focuses on
delivering the most relevant answer. The prompt template directs the model to provide accurate
and concise information with necessary references, and a temperature setting of 0.9 strikes a
balance between generating diverse responses and maintaining precision.
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Feedback and discussion

According to feedback made by Aquadvisers, the model only got 5 answers out of 20 that
were fully correct. Several key issues were noted in the model’s performance according to
the team:

1. Accuracy and Relevance: Many of the answers provided by the model were either
wrong or lacked relevance to the questions posed. For instance, the model often missed
important information that was clearly available in the source documents. It sometimes
provided details that were not requested or deviated from the specific context of the
question, indicating a need for better contextual understanding and focus.

2. Linking and Source Use: There were several instances where the model provided
incorrect links or referenced irrelevant materials. This shows a significant gap in
how the model utilizes source documents to extract and link appropriate information.
For example, it sometimes linked to sections not related to the query topic, such as
providing a link on sanitization when the question was about something else entirely.

3. Detail and Precision: The feedback also pointed out that even when the model
provided correct answers, it often lacked detail and failed to present concise, clear, and
specific information. In many cases, the model could have benefited from extracting
more detailed data from the documents to enrich its responses.

4. Understanding of Context: In several answers, the model misunderstood the context
or failed to address the question’s core intent. For example, it answered questions about
membrane specifications without focusing on the relevant parameters, or it did not ask
clarifying questions when the original query was vague.

56



Chapter 4. Troubleshooting of problems related to RO systems using LLMs

On all documents

Model name llama-3-70b-instruct

Open source Yes

Embedding BAAI/bge-small-en-v1.5

Data All scrapped data including the Q&A file

Top_k 5

System_Prompt

You are an expert in reverse osmosis with extensive knowl-
edge from technical manuals. Provide precise and concise
answers to the user’s questions without mentioning the
sources or documents. Make sure to answer precise ques-
tions related to calculations related to reverse osmosis.

LLM Temperature 0.01

Table 4.2: Configuration details for the Llama-3-70b-instruct model used on all documents.

The table above outlines the configuration for the llama-3-70b-instruct model, which was used to
handle data from all scraped sources, including the Q&A file. The model uses the BAAI/bge-
small-en-v1.5 embedding, which is designed to capture the semantic meanings of text effectively,
ensuring that the model understands and utilizes the content accurately. The setting of Top_k: 5
suggests that the model generates multiple answers, from which the best 5 answers are selected,
providing a range of possible responses to enhance accuracy. The prompt template is tailored for
precise, concise responses, emphasizing expertise in reverse osmosis and requiring the model
to provide clear answers without referencing source materials. The LLM temperature is set
to 0.01, indicating a high level of determinism in the model’s outputs, focusing on generating
highly accurate and consistent responses with minimal variation, which is ideal for technical and
calculation-related questions.
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Feedback and discussion

According to feedback from Aquadviser, We noticed that the model only got 7 answers out of
20 that were fully correct. The feedback on this model highlights several key issues with the
accuracy and relevance of the answers generated from the Q&A file related to reverse osmosis
systems. The model was evaluated on its ability to provide correct and precise answers, with
significant emphasis on using the right documents and delivering information that directly
addressed the queries. It is evident from the comments that while the model occasionally
produced correct answers, it frequently provided incorrect or imprecise responses. In many
cases, the model failed to reference essential information clearly available in the technical
manuals and FAQs from DuPont, indicating a gap in its ability to utilize the most relevant
sources effectively. For example, in several instances, the model either missed key data points
or mixed information from different applications, leading to inaccurate or irrelevant answers.
There were also comments about the model providing answers that, while correct, lacked
specificity or sufficient detail, suggesting that the model needs to better contextualize its
responses based on the exact requirements of the questions.

Next steps

The feedback on both models suggests that while some answers were technically correct, they
could have been improved by focusing more on the required information and eliminating
unnecessary details. It also indicates that enhancing the model’s ability to extract and synthesize
relevant information from the documents accurately is crucial for future iterations. Additionally,
Aquadviser team suggested to focus on one big document, which usually contains most answers
to the 20 questions.

Our next steps involved introducing the state-of-the-art models GPT-3 and GPT-4o to enhance
the quality and accuracy of our answers. Both models, known for their superior language
understanding and contextual awareness, were chosen to address the shortcomings identified in
the initial model, particularly in providing more relevant and precise responses. Alongside this,
we also implemented improved embedding techniques to better capture the semantic relationships
within the data. These embeddings were designed to enhance the model’s ability to understand
and utilize the content from documents more effectively. By upgrading to GPT-4o and refining
our embedding strategies, we aimed to significantly boost the model’s performance, ensuring
that it generates answers that are both accurate and contextually appropriate, thereby meeting the
specific needs of the reverse osmosis water treatment domain.
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4.4.3 OpenAI GPT3.5-turbo on technical manual

In this part, we transitioned to using OpenAI’s GPT3.5-turbo model via Azure, which provided
us with API access to leverage this state-of-the-art language model. This switch was motivated
by the need to enhance the accuracy and relevance of the model’s responses to technical queries
regarding reverse osmosis systems. We conducted a series of experiments (1, 2, and 3) with
GPT3.5-turbo, each designed to implement specific improvements and optimizations. These
experiments aimed to refine the model’s understanding of the technical manual: 2021 -DuPont
FilmTec™ RO Technical Manual and improve its ability to generate precise, contextually
appropriate answers. The details of each experiment and the corresponding enhancements will
be elaborated on in this section.

Experiment 1: Using GPT3.5-turbo [Model 1]

Model name gpt-35-turbo-instruct

Open source No

Embedding text-embedding-ada-002

Data 2021 - DuPont FilmTec™ RO Technical Manual

Top_k 10

PDF Parser pypdf

System_Prompt

As an assistant for question-answering tasks specializ-
ing in Reverse Osmosis (RO) Water Treatment Systems.
Your goal is to provide accurate, concise, and helpful in-
formation. Ensure your answers are direct, clear, logical,
and tailored to the user’s question, aiming to solve their
problem effectively. If additional information is needed,
indicate this explicitly. Use the given context to answer the
question.

LLM Temperature 0.7

Table 4.3: Configuration details for the gpt-35-turbo-instruct model used on the 2021 DuPont
FilmTec™ RO Technical Manual.

The table above outlines the configuration parameters for using the gpt-35-turbo-instruct model,
a large language model known for its advanced capabilities in understanding and generating
human-like text. This model leverages text-embedding-ada-002 for embedding, which is a
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powerful tool for capturing the semantic relationships within the text, enhancing the model’s
ability to comprehend and utilize technical content effectively. The data used in this configuration
is the 2021 DuPont FilmTec™ RO Technical Manual, ensuring that the model is grounded in
domain-specific knowledge. The Top_k parameter is set to 10, which means the model generates
the top 10 most relevant responses, allowing for a broader exploration of potential answers and
enhancing the likelihood of retrieving highly accurate information. For parsing the PDF of the
technical manual, pypdf is employed, a Python library that facilitates efficient extraction and
handling of text from PDF files, ensuring that the content is accurately fed into the model for
analysis. The prompt template is tailored to establish the model as an assistant specializing in
RO water treatment systems, focusing on providing clear, concise, and logical answers directly
addressing the user’s queries. This template guides the model to use the given context effectively
and indicates when additional information might be needed, aiming to deliver comprehensive
and helpful responses. Lastly, the LLM temperature is set to 0.7, which balances creativity and
precision in the model’s outputs. A temperature of 0.7 allows the model to generate varied yet
relevant responses, maintaining a degree of randomness to cover diverse possibilities while still
focusing on accuracy and clarity in technical contexts.

Feedback and discussion

The feedback on the second model’s performance, which involved transitioning to Ope-
nAI’s gpt-35-turbo-instruct highlights several key points about its strengths and areas for
improvement. The evaluation focused on whether the answers provided by the model
were “precise” or “loose” and whether they correctly referenced the technical manual. The
comments indicate that while the RAG model often provided more precise and contextu-
ally relevant answers compared to the standalone LLM, there were still instances where
the model failed to extract the correct information from the manual or misunderstood
the questions. For example, in some cases, the answers were marked as wrong despite
the correct approach, often due to referencing the wrong section of the document or
omitting critical details like specific tables or figures. Furthermore, there were multiple
instances where both models (LLM and LLM + RAG) failed to mention necessary context
or provide specific answers that align with the technical manual, indicating a need for
better document parsing and information retrieval.

Next steps

To address these issues and improve the model’s performance, the next steps will involve inte-
grating more advanced tools for data processing and retrieval. Specifically, we plan to implement
Apache Tika as a PDF parser to enhance our ability to extract accurate and comprehensive
information from complex documents like technical manuals. Tika’s robust capabilities in text
extraction will ensure that all relevant data, including embedded tables and figures, are correctly
parsed and available for the model to reference. Additionally, we will incorporate the Semantic
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Chunker as our text splitter to better segment the documents into meaningful chunks. This
method will improve the retrieval process by ensuring that the model receives well-organized,
contextually coherent chunks of text, leading to more accurate and relevant answers.

Experiment 2: Using GPT3.5-turbo With tika& Langchain’s Semantic Chunker [Model 2]

In this experiment, we used the same parameters in Table3, with only two modifications:

• Pdf parser: Tika

• Text splitter: Langchain’s Semantic Chunker

Feedback and discussion

The feedback on this model reveals that while there have been some improvements in the
precision of answers compared to previous models, there are still significant issues that
need to be addressed. The evaluation indicates that the model was more effective in gener-
ating answers that are closer to what was required, with several responses categorized as
“very good” or “good.” This suggests that the modifications made have positively impacted
the model’s ability to provide relevant answers. However, there are also numerous cases
where the model failed to extract or correctly interpret information from the technical
manual, often missing crucial details or referencing incorrect sections. For instance, many
of the correct answers were noted to be lacking in specificity or depth, while incorrect
answers frequently resulted from the model either not finding or not using the relevant
chunks from the documents.

One key observation is that the model’s chunking mechanism needs further refinement. The com-
ments point out several instances where valuable chunks of information were missed, indicating
that the model’s ability to segment and utilize document content is still not optimal. This directly
impacts the accuracy of the answers, as seen in scenarios where the model should have referred
to specific pages or sections of the technical manuals but failed to do so. Additionally, there were
cases where the model generated correct answers but did not capture all necessary keywords or
context, resulting in responses that, while technically accurate, were not fully aligned with the
question’s intent.

Next steps

To address the identified issues with this model, we decided to integrate AzureAIDocumentIntel-
ligenceLoader as our PDF parser. This method is designed to provide high-resolution optical
character recognition (OCR) capabilities, ensuring that even the most detailed and complex
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elements within the technical manual, such as embedded tables, are accurately extracted and
formatted.

In addition to this, we have decided to implement the MarkdownHeaderTextSplitter from
LangChain as our text splitter. This tool will segment the documents based on markdown
headers, allowing us to break down the content into logically organized chunks. By splitting the
text in this manner, we aim to improve the model’s ability to navigate through the documents
and identify relevant sections more effectively. This structured approach will facilitate better
contextual understanding and more precise retrieval of information, ultimately leading to more
accurate and detailed answers in response to technical questions.

Experiment 3: With AzureAIDocumentIntelligenceLoader &MarkdownHeaderTextSplit-
ter [Model 3]

In this experiment, we used the same parameters in the previous experiment, with only two
modifications:

• Pdf parser: AzureAIDocumentIntelligenceLoader

• Text splitter: Langchain’s MarkdownHeaderTextSplitter

Feedback and discussion

Overall 6/10. The answers are concise, however sometimes the following issues pop up:

• mention tables that are not included in the answer (Answers 6 and 9).

• No need to add at the beginning of the answer [As an assistant for question-
answering tasks specializing in Reverse Osmosis (RO) Water Treatment Systems,
let me provide you with..]

• no need to add this sentence at the beginning of the answer "As an assistant special-
izing in RO water treatment systems, I can provide some information on” (Answer
8). Sometimes confusing additional info (Answer 10).

• No need to mention this in the answer [As an AI, I do not have personal opinions.]
(Answer 16).

Next steps

In the next steps, we decided to start implementing OpenAI GPT-4o on our technical manual and
see if the performance of our model will be any better.
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4.4.4 OpenAI gpt-4o on technical manual

Experiment 1: [Model 3] with gpt-4o

In this experiment, we used the same parameters in [Model 3], with only one modification, which
is the utilization of gpt-4o instead of gpt3.

Feedback and discussion

Overall 8.5/10, this is so far the model that provides good answers with valuable details
and well written and honest true answers without additional made up insights. Clear
concise and to the point and very good way of presenting the answers like in answer 6 with
bullet points. Very coherent answers and very well logical and meaningful connection
between insights.

Cost

In this experiment, we wanted to see how much will it cost to use gpt-4o with our parameters.
For this reason, we decided to study the average of input tokens, average output tokens, average
total tokens, and at last the average cost per query in US dollars.

• Average of input tokens : 4679.45

• Average of output tokens : 240.8

• Average of total tokens : 4900.95

• Average of cost per query in Us dollars : 0.026 $

Next steps

After several meetings with the team, we identified a critical improvement to address the model’s
limitations in accurately retrieving and referencing information: splitting the entire document
by chapter. This approach was proposed because most of the answers required by the model
are typically found within specific chapters of the technical manuals. By dividing the document
into chapters, we aim to enhance the model’s ability to focus on the most relevant sections,
reducing the chances of irrelevant or incorrect information being included in the answers. While
we recognize that this method will be computationally expensive, as it involves processing and
analyzing each chapter individually, we believe that the potential benefits justify the investment.
This approach is expected to significantly improve the precision and contextual accuracy of the
model’s responses, as it will be able to more effectively match the queries with the corresponding
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chapters. The experiment with this chapter-based splitting will be important in determining
whether this strategy can provide the level of detail and specificity needed for technical question-
answering tasks.

Experiment 2: [Model 3] with gpt-4o and Chapter splitting approach

In this experiment, we used the same parameters in [Model 3], with two major modifications,
which are :

• The utilization of gpt-4o instead of gpt3

• The splitting method: splitting the entire document by chapter as explained before.

Feedback and discussion

The answers are in general good and contain good details. If the answer of the question
is in the manual, it finds the corresponding chunks (containing the answer) and rate it
as the most similar chunk, hence it uses the corresponding entire chapter as the context.
However, in some cases it added additional information which is not correct but also
not mandatory to satisfy the answer. In cases where the answers are not in the manual
technique, this model, sometimes, does not recognize and give a similar answer as the
LLM (without RAG), in this case however, we expected to not give an answer and say it
has no correct answer. In two cases (answer 11 and 12) where the answers were given
wrong. The increase in answer size by containing the non necessary information/details
may be due to updating based LLM from 03 to 4o. This update is however mandatory
because of the size of the context, since 03 had a smaller limit of the maximal prompt size.
(The answers are generally good, insightful and detailed. When a question’s answer is
in the DuPont membrane technical manual, the model identifies the relevant sections
(containing the answer) and rates it as the most similar part, using the entire chapter
as context. However, in some instances, it added extra information that is incorrect
and unnecessary for answering the question. When the answers are not in the DuPont
membrane technical manual, the model sometimes fails to recognize this and provides a
similar answer as a standard language model (without Retrieval-Augmented Generation).
In these cases, we expected it to indicate that there is no correct answer rather than provide
one. In two cases (answers 11 and 12), the answers were wrong.

Next steps

The model generally did well, but we came to a conclusion that we can now experiment more
with the prompt, and see how that will eventually affect our model. The prompt we will be using
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should handle the issues related to how long the answers are, as well as being a bit more straight
to the point.

Cost

In this experiment, we eventually had to use an entire chapter as context to out model, and so
some concern was raised around the cost of this operation. For this reason, we decided to study
the average of input tokens, average output tokens, average total tokens, and at last the average
cost per query in Us dollars.

• Average of input tokens : 19911.0

• Average of output tokens : 240.8

• Average of total tokens : 20151.8

• Average of cost per query in US dollars : 0.103 $

Experiment 3: Apply a new prompt on the latest two models

In this final experiment with RAG and OpenAI gpt-4o, we will use an enhanced prompt for a
better generation :

—Role—
As an assistant for question-answering tasks specializing in Reverse Osmosis (RO) Water
Treatment Systems.
Use the following pieces of retrieved context to answer the question.
—Goal—
Your goal is to provide accurate, concise response.
If you don’t know the answer, just say so. Do not make anything up, or add information
that is not answering directly the user’s question.
Ensure your answers are direct, clear, logical, and tailored to the user’s question, aiming
to solve their problem effectively.
Do not include information where the supporting evidence for it is not provided.
If additional information is needed, indicate this explicitly.
—Target response length and format—
single straight to the point paragraph, add a section called: Additional information, that
should be longer, in which you give more details that the user might need.
Style the response in markdown.
—Context—
context
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Feedback and discussion

For the splitting by sections with enhanced prompting, it got an Overall 8.3/10, this is so
far also the model that provides good answers with valuable details and well written and
honest true answers without additional made up insights. Very coherent answers and very
well logical and meaningful connection between insights. Slightly lack the presentation
of bullet points and bold written points but it is so far one of the best. The splitting by
chapter was also showcased as a great performance.

Since both models with the new enhanced prompt performed well, we decided to go with the
one that objectively costs less, and that is the model with the chunking by sections. The choice
was made after several meetings and discussions, and it was eventually the most optimal model
to be deployed in our platform.

4.4.5 Discussion

Throughout this project, we conducted a series of experiments and refinements using different
models to improve the accuracy and relevance of answers provided for technical questions related
to reverse osmosis systems. The process began with the implementation of Llama3, which was
tested both on the Q&A file from Dupont and across all relevant documents. Despite some
successes, the feedback highlighted the limitations of this model, particularly in its ability to
provide precise answers when drawing from multiple sources. The results showed that while
Llama3 could handle certain queries effectively, it often struggled with the complexity and
specificity required in a technical domain like water treatment. These limitations led to the
decision to explore more powerful models.

We then moved on to experiments with OpenAI’s GPT-3 on the technical manual. Over three
separate experiments, we adjusted the model’s parameters and retrieval methods, gradually
improving its performance. The feedback indicated that GPT-3 was more capable of handling
complex queries and retrieving relevant information. However, the model still occasionally
provided responses that lacked the necessary depth or specificity, particularly when the answers
were dispersed across different sections of the manual. Each iteration brought us closer to our
goal, with improvements in how the model parsed and understood the technical content, but the
results were still not fully satisfactory for deployment.

In the final stage, we implemented OpenAI’s GPT-4o on the technical manual, further refining our
approach based on the insights gained from previous experiments. The introduction of enhanced
prompts and more sophisticated retrieval techniques marked a significant leap in performance.
Experiment 3, which applied a new prompt on the latest two models(chunking by sections,
and chunking by chapter), showed the most promise. The feedback confirmed that GPT-4o,
combined with these refined prompts, was highly effective in generating accurate, detailed, and
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contextually appropriate responses. The model’s ability to parse complex documents and retrieve
precise answers was significantly improved, particularly when focusing on specific chapters of
the manual.

Both the lastest models, with different chunkings were performative, but The most noteworthy
outcome was from the experiment where we split the entire document by sections, and with
the use of gpt-4o. This approach proved to be the most performative, as it allowed the model
to focus on relevant sections, greatly enhancing the accuracy and relevance of its responses.
This method provided clear benefits in terms of precision and reliability. Given its superior
performance, this model with enhanced prompts will be the one we deploy on the company
website. It offers the best balance of accuracy, contextual understanding, and user satisfaction,
making it the optimal choice for real-world applications in technical question-answering tasks
related to reverse osmosis systems.

4.5 GraphRag

4.5.1 Introduction

In this section, we explore the implementation of GraphRAG, an advanced technique that
integrates graph-based data structures with Retrieval-Augmented Generation (RAG) models.
GraphRAG represents a significant evolution in the way we retrieve and utilize information,
particularly in complex domains like reverse osmosis (RO) systems. Traditional RAG models
focus primarily on extracting information from linear or hierarchical datasets, but they often
fall short when dealing with intricate relationships and dependencies between data points.
GraphRAG, on the other hand, leverages the power of knowledge graphs to better understand and
represent these relationships, allowing for more accurate and contextually relevant responses.

The decision to implement GraphRAG was driven by the need to overcome the limitations
of previous models, such as Llama3 and GPT-4o, which, despite their advanced capabilities,
struggled with certain aspects of information retrieval in highly specialized technical domains.
By integrating graph-based data, we aim to enhance the model’s ability to navigate complex
documents and provide more precise answers to technical questions. The primary objective
of this implementation is to improve the model’s performance in terms of accuracy, relevance,
and contextual understanding, making it better suited for deployment in real-world applications
within the RO industry.
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4.5.2 Data Preparation for GraphRAG

The data preprocessing for our GraphRAG implementation was centered around a single, highly
detailed document: the markdown file of the DuPont Technical Manual. To efficiently process
this document and create a knowledge graph, we utilized code provided by Microsoft specifically
designed for GraphRAG. Microsoft uses LLMs to generate and extract entities, communities, and
relationships from the markdown file, constructing a knowledge graph that reflects the complex
connections within the technical content.

Figure 4.4: An overview of the generated graph using yfiles_jupyter_graphs library from python.

Entities, communities, and relationships are then stored in Parquet files format, which is opti-
mized for large-scale data storage and retrieval. The use of Parquet files ensures that the data
remains easily accessible and efficiently manageable, allowing for quick retrieval during the
question-answering process.
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Figure 4.5: Data files generated by an LLM with predefined prompts by Microsoft.

The figure above shows a list of Parquet files generated during the data preprocessing stage for
the GraphRAG implementation. Here’s a brief overview of each file:

• create_final_communities.parquet: Contains information about various communities
identified within the data. Communities represent clusters of related entities or concepts
within the knowledge graph.

• create_final_community_reports.parquet: Includes reports or summaries related to the
identified communities. These reports detail the characteristics of each community within
the knowledge graph.

• create_final_documents.parquet: Stores information about the documents that were
processed, in our case, it’s only one document

• create_final_entities.parquet: Contains the entities extracted from the document, such as
technical terms which are crucial for constructing the knowledge graph.

• create_final_nodes.parquet: Represents the nodes within the knowledge graph, each
corresponding to an entity or concept extracted from the document.

• create_fina_relationships.parquet: Describes the relationships between the nodes (enti-
ties) in the graph, outlining how different concepts are interconnected.

• create_final_text_units.parquet: Holds the text units that were extracted and processed
from the document, which are the basis for generating the entities and relationships.
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4.5.3 Experiments

Experiment 1

Model name gpt-4o

Open source No

Embedding text-embedding-3-small

Data 2021 - DuPont FilmTec™ RO Technical Manual

Prompt_template

—Role—
As an assistant for question-answering tasks specializing
in Reverse Osmosis (RO) Water Treatment Systems, re-
sponding to questions about data in the tables provided.
—Goal—
Your goal is to provide accurate, concise.
If you don’t know the answer, just say so. Do not make
anything up, or add information that is not answering di-
rectly the user’s question
Ensure your answers are direct, clear, logical, and tailored
to the user’s question, aiming to solve their problem effec-
tively.
Do not include information where the supporting evidence
for it is not provided.
—Target response length and format—
response_type= ‘multiple paragraphs’
—Data tables—
context_data

LLM Temperature 0

Table 4.4: Configuration details for the gpt-4o model and GraphRag used on the 2021 DuPont
FilmTec™ RO Technical Manual.

The table above describes the configuration for the first experiment using GPT-4o. We got
inspired by the original Microsoft system prompt, and with a few modifications, we adjusted it
for our purpose for more accurate responses based strictly on the provided context. The use of the
“text-embedding-3-small” embedding ensures efficient text representation, while the temperature
setting of 0 guarantees deterministic outputs, minimizing the risk of fabrication or irrelevant
information.
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Feedback and discussion

Aquadviser’s feedback: in general the majority of the answers are good and have good details
but too much details, and the conclusion in every answer, so it may not be practical for an
operator to confuse them with all the non-necessary information and conclusion at the end of
every answer.

According to the evaluation, while the model provided good and useful details, the answers were
often broader than necessary. This could lead to confusion for operators who need straightforward
and precise information. Some answers also failed to pick up the correct information from the
data, highlighting the need for further refinement in focusing the model on the most relevant
details. Despite these issues, the overall feedback was that the model generally performed well,
but there is room for improvement in tailoring the responses more closely to the specific needs
of the end-users.

Experiment 2

In this experiment, we observed that the variable response_type within the system prompt
had a significant impact on the model’s outputs. Initially, this parameter was set to generate
responses in ‘multiple paragraphs’ by default, which sometimes resulted in answers that were
more detailed than necessary. To address this, we decided to modify the respons_type to “single
straight to the point paragraph.” This change aimed to produce more concise, focused, and direct
answers, aligning better with the need for straightforward information, especially in the context
of technical queries related to Reverse Osmosis (RO) systems. There was no change in the
parameters, except in the response_type variable.

Feedback and discussion

Aquadviser’s feedback: The answers are accurate and direct. If the answers to the questions
are available in the DuPont technical manual, the model provides them precisely. If the
information is not in the manual, the model correctly states that it is not available in the
provided document. However, for answer number 6, the model did not provide an answer and
incorrectly stated that the document does not specify the requested information, even though
this information actually exists in the DuPont technical manual. This might be because the
answer is in a table that the model could not extract. Additionally, answer 12 seems to be
incorrect (hallucination), as it mentions “membrane. . . for low-salinity or cold seawater,”
which is not accurate. Answer 13 is also lacking in detailed insights.

The feedback indicates that the model successfully identified when information was missing
from the document and refrained from making up answers, which is commendable. However,
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there were instances of hallucinations, where the model provided inaccurate information, and
in another question, where the response lacked depth. These observations suggest that while
the model is largely reliable, improvements are needed in handling tabular data and ensuring
accuracy to avoid hallucinations.

Experiment 3

In the final experiment, we aimed to address the feedback from Aquadviser by enhancing the
depth and detail of the model’s responses. To achieve this, we modified the response_type in the
system prompt to instruct the model to generate a single, straight-to-the-point paragraph for the
initial answer. Additionally, we added a new section titled “Additional information,” where the
model was prompted to provide more comprehensive details that the user might find useful. This
adjustment was intended to not only maintain the accuracy and clarity of the primary response
but also to offer richer, more informative content that aligns with the user’s needs, thus improving
the overall quality of the answers provided.

response_type=“single straight to the point paragraph, add a section called: Additional informa-
tion, that should be longer, in which you give more details that the user might need”

Feedback and discussion

Aquadviser’s feedback: ‘The model in general is very concise and provides the clear cut info
in the response and provides valuable additional info at the end. However, sometimes (A10)
it repeated the response info exactly the same in the additional info. (Maybe this can be
fine-tuned by prompting). Maybe the concept of saying The data provided does not specify
the exact percentage of urea rejection by FilmTec BW30 RO membranes. is very true for
suppliers like DuPont or Toray or any membrane suppliers because it means according to
their published data there is no valid info about and hence, it can contact you directly with the
suppliers such as DuPont by providing the email and the suggested tailored question (good
thinking to discuss with DuPont and Mann Hummel).’

Overall, this model performed better than the previous ones. It consistently provided accurate,
concise answers and effectively added valuable additional information when prompted. Despite
some minor redundancies, the enhanced depth of the responses made this model the most effective
and reliable of all the versions tested, demonstrating that the adjustments made significantly
improved its performance.

Cost

Graphrag is known for being very expensive in terms of usage, especially in the indexing phase,
and that is because to generate the knowledge graph, we use a LLM. For this reason, we wanted
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to see how expensive was it to index the entire document of DuPont’s technical manual

• input tokens : 913 790

• input tokens price in US Dollars : 3.74 $

• output tokens : 249 728

• input tokens price in US Dollars : 4.5 $

• Total tokens : 1 163 518

• Total tokens price in US Dollars : 8.31 $

4.5.4 Conclusion

The implementation of GraphRAG has shown significant potential in enhancing information
retrieval for complex domains like reverse osmosis (RO) systems. By leveraging knowledge
graphs, GraphRAG has improved the accuracy and relevance of responses, especially when
dealing with technical documents such as the DuPont manual. The system’s ability to understand
and structure relationships between entities has proven useful in providing more precise and
contextually aware answers. As we continue refining the model and integrating more data
sources, GraphRAG will play a pivotal role in improving how AI assists in troubleshooting and
decision-making for RO systems.

4.6 WebApp

The Aquadviser web application is designed to provide users with an easy-to-use interface for
interacting with a conversational AI agent. The system uses several technologies and services to
manage the website and the AI functions. Here’s how it works:

• Front-End Interface: Users access the web application via the Aquadviser website,
found at https://www.aquadviser.com. The application itself is hosted at https:
//www.aquadviser.com/app.

• Backend Infrastructure: The backend is hosted on Azure App Service, ensuring scalabil-
ity and strong performance for the entire website. The platform is developed using FastAPI,
which manages various sections of the website. For the conversational AI applications,
we use Chainlit, which enables smooth communication between users and the intelligent
agent.
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Figure 4.6: Web Application Architecture.

• AI Agent (LangGraph): At the core of the system an AI agent, is implemented using a
LangGraph framework. This LangGraph Agent consists of the following nodes:

− Contextualization Chain: This node improves the user’s question by considering
the context from their chat history, and reformulates the question when necessary.

− Q&A Retrieval Chain: Once the query is contextualized, this node retrieves relevant
information from the Neo4j Database to provide accurate answers to the questions.

• Data Layer: The application’s data is stored in two primary sources:

− Azure Data Lake Storage for managing large files.

− Azure Database for PostgreSQL to handle structured data, particularly user related
information, such as chat history and application-specific data.

This architecture ensures that the conversational AI agent can effectively respond to user queries
by contextualizing them and retrieving the most relevant information. The modularity and scala-
bility of the system also allow for future enhancements and modifications to the AI workflows.
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Figure 4.7: Web Application User Interface.
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General Conclusion

This report presents an extensive study on the integration of Artificial Intelligence (AI) tech-
niques, specifically focusing on the application of machine learning models and Large Language
Models (LLMs), to improve predictive maintenance and troubleshooting in reverse osmosis (RO)
systems. Starting from understanding the principles of reverse osmosis and identifying common
challenges such as biofouling, scaling, and energy inefficiencies, the report delves into the use of
advanced technologies like Retrieval-Augmented Generation (RAG) and GraphRAG to enhance
the accuracy and relevance of technical support in RO systems.

A series of experiments were conducted using various LLMs—beginning with Llama3 and
advancing to more sophisticated models like GPT3 and GPT-4o. Each experiment aimed to
refine the model’s ability to provide precise, contextually accurate answers by leveraging data
from technical manuals, Q&A files, and other resources. We have discovered through These
experiments, that continuous model fine-tuning and prompt engineering are a crucial part of
achieving better results in LLMs. We also explored state-of-the-art methods such as GraphRAG,
which was difficult due to the limited resources of the approach, however, we eventually managed
to showcase how implementing graphs in RAG systems can have a significant potential in
organizing and retrieving information more effectively.

Several limitations emerged throughout the study. The availability and quality of data were key
challenges, with some models performing suboptimally due to the lack of comprehensive datasets.
Moreover, while sequential models like LSTM were considered for predictive maintenance,
the current dataset was insufficient to fully explore their potential, which hindered the ability
to anticipate problems with high temporal accuracy. The integration of additional documents
and more diverse data sources would further strengthen the model’s ability to provide reliable,
detailed responses across a broader range of technical scenarios.

Looking ahead, future perspectives include expanding the dataset, particularly with the addition
of technical manuals, case studies, and operational data from real-world RO systems. We also
plan to further optimize graph-based models like GraphRAG to enhance their ability to navigate
complex information and improve decision-making capabilities, through enhancing the prompt
design to ensure even more accurate responses. The development of more sophisticated prompts
and algorithms tailored to specific RO-related tasks is crucial for achieving even greater precision
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and operational efficiency. Overall, this work showcases the immense potential of AI-driven
solutions in addressing the pressing challenges in water treatment systems, contributing to more
intelligent, efficient, and sustainable operations within the industry.
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tion of the factors affecting reverse osmosis membrane performance using machine-learning
techniques. Computers Chemical Engineering, 159:107669, 2022.

[12] Yun Teng and How Yong Ng. Prediction of reverse osmosis membrane fouling in water
reuse by integrated adsorption and data-driven models. Desalination, 576:117353, 2024.

[13] W. John Hutchins. The georgetown-ibm experiment demonstrated in january 1954. In
Conference of the Association for Machine Translation in the Americas, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[14] Joseph Weizenbaum. Eliza—a computer program for the study of natural language com-
munication between man and machine. Communications of the ACM, 9(1):36–45, 1966.

[15] Sepp Hochreiter. Long short-term memory. Neural Computation, 1997.

[16] Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 5998–6008, 2017.

[18] Meta AI. Meta ai blog: Meta llama 3. https://ai.meta.com/blog/meta-llama-3/,
2024. Accessed: 2024-09-09.

[19] Abhimanyu Dubey et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

[20] OpenAI. Gpt-4 openai system card, 2023. Accessed: 2024-09-09.

[21] Wielded Blog. Gpt-4o benchmark: Detailed comparison with claude and gemini, 2024.
Accessed: 2024-09-09.

[22] Erwin Rimban. Challenges and limitations of chatgpt and other large language models.
SSRN Electronic Journal, page n. pag., 2023.

[23] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Sebastian Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
Advances in Neural Information Processing Systems, volume 33, pages 9459–9474, 2020.

[24] Prompt Engineering Guide. Retrieval-augmented generation (rag). Accessed: 2024-09-09.

[25] Google Cloud. Retrieval-augmented generation use case. Accessed: 2024-09-09.

[26] Inc. Amazon Web Services. What is retrieval-augmented generation (rag)?, 2024. Accessed:
2024-09-09.

79

https://ai.meta.com/blog/meta-llama-3/


Bibliography

[27] NVIDIA. What is retrieval-augmented generation (rag)?, 2023. Accessed: 2024-09-09.

[28] Databricks. Retrieval-augmented generation (rag) - what is rag?, 2023. Accessed: 2024-
09-09.

[29] Darren Edge et al. From local to global: A graph rag approach to query-focused summa-
rization. arXiv preprint arXiv:2404.16130, 2024.

[30] Tianqi Chen and Carlos Guestrin. Xgboost documentation, 2016. Accessed: 2024-09-09.

[31] IBM. Random forest, 2023. Accessed: 2024-09-09.

[32] IBM. What is linear regression?, 2024. Accessed: 2024-09-09.

[33] GeeksforGeeks. Selenium python tutorial, 2024. Accessed: 2024-09-09.

80



Summary

This project explores the integration of Artificial Intelligence (AI) techniques to enhance the
performance of reverse osmosis (RO) systems used in water treatment, particularly in desali-
nation. By applying machine learning models for predictive maintenance and utilizing Large
Language Models (LLMs) for troubleshooting, we aim to optimize system performance and
reduce operational costs. The study involved multiple experiments using advanced models such
as Llama3, GPT-3, and GPT-4o, combined with Retrieval-Augmented Generation (RAG) and
GraphRAG for more effective information retrieval. Despite challenges like data availability
and the need for further optimization of models, significant progress was made in improving the
accuracy of predictive maintenance and troubleshooting. The project demonstrates the potential
of AI to address critical challenges in water treatment systems, offering a more intelligent,
efficient, and sustainable approach to managing RO operations.

Résumé

Ce projet explore l’intégration de techniques d’intelligence artificielle (IA) pour améliorer
les performances des systèmes d’osmose inverse (RO) utilisés dans le traitement de l’eau, en
particulier dans la désalinisation. En appliquant des modèles d’apprentissage automatique pour
la maintenance prédictive et en utilisant des modèles de langage (LLM) pour le dépannage,
nous visons à optimiser les performances des systèmes et à réduire les coûts d’exploitation.
L’étude a impliqué plusieurs expériences avec des modèles avancés tels que Llama3, GPT-3
et GPT-4o, combinés avec la génération augmentée par la récupération (RAG) et GraphRAG
pour un meilleur accès à l’information. Malgré des défis comme la disponibilité des données
et la nécessité d’optimiser davantage les modèles, des progrès significatifs ont été réalisés dans
l’amélioration de la maintenance prédictive et du dépannage. Ce projet démontre le potentiel de
l’IA pour répondre aux défis critiques des systèmes de traitement de l’eau, offrant une approche
plus intelligente, efficace et durable pour la gestion des opérations de RO.
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